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1 Summary

The research conducted has dealt with rule-based expert systems. The algorithms that

may lead to effective parallelization of them have beerr investigated. Both the forward

and backward chained control paradigms have been investigated in the course of this

work. The best computer architecture for the developed and investigated algorithms has

been researched.

In the Intelligent Systems Lab at the University of South Florida, two experimental

vehicles have been developed to facilitate this research. They are Backpac, a parallel

backward chained rule-based reasoning system and Datapac, a parallel forward chained

rule-based reasoning system. Both systems have been written in Multilisp [26], a version

of Lisp which contains the parallel construct, future. Applying the future function to a

function cause the function to become a task parallel to the spawning task. Backpac ha-s-

also been ported to MUL-T [32], Common Lisp [59], and C. These systems originally

run under a simulator developed at MCC [38].

Additionally, Backpac and Datapac have been run on several disparate parallel pro-

cessors. The machines are an Encore Multimax with 10 processors (and one with 8

processors), the Concert Multiprocessor with 6d processors, and a 32 processor BBN -
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-- GP1000. Both the Concert and the GP1000 are switch-based machines. Tile Multimax

has all its processors hung off a common bus. All are shared memory machines, but

have different schemes for sharing the memory and different locales for the shared mem-

ory. Tile main results of our_nvestigations come from experiments on the 10 processor

Encore and the Concert with partitions of 32 or less processors. We have some initial

results from the BBN, but they are not definitive at this time,

Additionally, experiments have been run with a stripped down vcrsion of EMYCIN

[57]. The original parallel system called EMY [38], has had its performance in simulations

described in the literature. Our work with it has been on true parallel processors. The

need for load balancing rules and being judicious in the use of and/or parallelism has

become apparent from experiments on the Encore and Multimax.

The real-world knowledge bases that were used were a 64-rule knowledge base which

could diagnose the cause of fevers and a 99 rule knowledge base on gem identification.

In addition, our group generated a number of fictional knowledge bases which contained

no real knowledge. Instead they contained large numbers of rules structure in desired

formats. The rationale for this was to empirically examine the limits of parallelism in

the paradigms.

1.1 Backpac

This syske_m is conceptually very much like EMYCIN. The advantage of it is that the

same function,_lity and spirit does not have to be maintained, as it is not_ the same. It

is also a somewhat zimpler model. Questioning the user has been ignored in o_r studies

=

thus far.

Parallelism can be used in evaluating rules and in evaluating clauses. We fotmd

no benefit in evaluating clauses of rules in parallel in general. The biggest benefits

from parallelism were in grouping goal rules together and evaluating groups of them as

separate tasks. This is especially effective on the Concert, where speed increases as high
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as 17 on 20 processors were observed. It is not as effective on tile Multimax architecture.

In fact, clustering goal rules has a negligible effect for a number of generated knowledge

bases on the Multimax.

1.2 Datapac

Any forward chained system must be put into the context of the OPS5, etc. [9] systems.

These systems make use of the highly efficient RETE [8] pattern matching algorithm

and are widely used. They follow the match, recognize and act control cycle. They

are truly data-driven, as changes to working memory drive the system. Parallelism in

these systems has been investigated by a number of researchers [41, 14, ll, 13, 14, 35].

The initial results were not encouraging showing less tha.n an order of magnitude speed-

up to be possible from the use of parallelism. Later results have both empirically and

theoretically shown that more than one order of magnitude, but less t,han approximately

64 times speed-up may be achieved.

It turns out that in these systems match will take up to 90% of the time. The

match component becomes the most important to parallclize and it has shown some

definite limitations in that respect. IIence, our examination has taken a somewhat

different direction. We have concentrated on the structuring of the rules in attempting

to parallelize such a system. In a system which chains there is a hicrarchy of rules.

That is, some rules must be fired before others can be. Datapac makes use of the

hierarchy information in pruning the set of possible rules at any given time. There is no

explicit synchronization of the rules in the system, as in the OPS match, recognize and

act cycle. It is not as efficient at matching patterns as the RETE algorithm and does

not currently allow rules to fire multiple times. Working memory is distributed among

processors in this model with a global working memory containing all the information

derived. Individual rule processors will only have some needed subset of the overall

working knowledge.



It is functionally limited in comparisonto OPS systems, which are truly rule-based

programming languages. Datapac is simply an expert systems tool (though it lacks most

features that a tool would have). The system has been investigated less deeply than the

backward chained systems. Order of magnitude speed increases have been observed on

the Concert with approximately 100 rules on family relationships.

1.3 The outlook

Some issues that affect research in this area are the availability of real knowledge bases.

Many of them are proprietary. The parallel Lisps are in general not very fast. This is

certainly true of Multilisp, which does not have a true compiler and BBN's Lisp which

does (yet can take 1/2 hour to load a 50 rule knowledge base, which can be loaded

in seconds in Common Lisp on SUNS). All the features one would like do not exist in

current parallel Lisps, such as spin locks, threads as opposed to tasks, separate memory

locations, etc. Itowever, this is changing and will get better in the future. Top Level Lisp

and Lucid both have recently come out with parallel Lisps which have good performance

and some nice tools.

The parallel machines in existence are not mature and may not provide the kind of

performance that they will in the future. Tools to determine what is happening in a

parallel program and where the bottlenecks exist are largely non-existent, but extremely

important. The C language provides access to most of the existing features of parallel

machines and is much faster than most of the parallel Lisps. For this reason it makes

a viable vehicle for this type of research [14]. It has proven possible to build expert

systems in languages such as C and of course in C, which is why we have begun using a

C based system to examine the possibilities with the Backpac system. It is clearly not

in the class of Lisp for developing intelligent systems. The parallel Lisps should catch

up to C as the sequential ones have.

It is clear that parallelization of expert systems (and one might also claim intelligent
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systems)can provide speedincreases.In forward chainedsystemsit is important to get

around the limitation of so much time being spent in the match phase. The Datapac

system does not spend so much time on match. Ilowever, it has other characteristics

which must be further investigated before one can make a good comparison to OPS

based systems. The incorporation of hierarchy information into OPS based systems

(such as is done in Datapac) may provide a way of decreasingthe percentageof time

spenton match. Recentresults from IJCAI-89 [41]suggestthat saving lessstate than is

doneby the RETE algorithm may allow lesspercentagetime to bespent in the match

phase,also. Hence,more progressin speedincreasesin forward chainedsystemsseems

possible.At the current time, 64processorswould be the maximum neededin a machine

to be usedfor parallel forward chainedexpert systems.

For backward-chainedsystems the picture is maybe less clear than the forward

chained systems. The major bottleneck here is working memory, again. Currently,

thereare no definable limits on.the speed-upthat may be achieved.We havenot made

anextensivestudy of actual knowledgebases,but it is likely that their generalstructure

will provide limits. Instead, we have concentrateon trying to determinegenerallimits

basedon the structure of knowledgebases.The resultshave beenmixed. It seemsthat

careful attention to load balancing and the structure of knowledgebasewill allow the

tuning of parallelism to provide better performance than we have currently obtained.

Also, it is clear that spin lockson working memory areneeded.This is an areaof great

contention, but the time spentmodifying it is small. We have not had the capability to

effectively implement spin locks in our Multilisp systems. It is also important to parti-

tion working memory,when it is possible. IIowever, this is difficult to do in Multilisp

(and webelievenon-packaged Lisps in general). Lisp will provide different cons cells, but

end up pointing them to the same memory location, which of course is where contention

can occnr.

It seems certain that order of magnitude speed-ups can be observed for some knowl-



edgebasestructures, if one discounts the fact that most backward chained systems ask

the user for information. This is clearly a sequential bottleneck. It also brings the ques-

tion of how questions will be ordered, as they may come in a jumbled order due to the

parallelism. This issue must be addressed for actual systems.

Whether or not two orders of magnitude of speed increase can be achieved with

backward chaining is an open question. If we were to speculate, it would be that it can

be achieved with large knowledge bases that require little, if any interaction with tile

user. In general parallelism can provide some benefits to the speed of expert systems

and in the future may provide truly indispensable benefits.

It is too early in tile game to definitively specify tile best architecture for parallel ex-

pert systems. However, one can make some experience based speculations, which follow.

The processors should each have some significant amount of local memory. There needs

to be some shared memory also. This might be in one location or distributed, it is very

unclear which is best. The processors we have been concerned with would he MIMD,

capable of doing independent work, which is clearly different from a neural model. Be-

cause of the shared working memory, it would seem that some sort of hypercube or

switch connected system would be better than a bus-based system. On the Multimax,

it was hypothesized (but never definitively shown) that an unexpected amount of bus

contention was causing unexpected performance degradation. At this time it would seem

that the system need not be concerned with thousands of processors, but hundreds at

the maximum. The ability to efficiently implement spin locks will be important.

2 Publications and programs

This section contains a summary of our current publications under tlle grant and the

programs developed. Submitted papers are not included.

Parallel Rule-based Algorithms for Reasoning Systems, AAAI Spring Symposium

Series on Parallel Models of Intelligence, Stanford, Ca. March 1988.
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Parallel Rule-Based Algorithms for Reasoning Systems, 1 _t Florida Artificial Intelli-

gence Research Symposium, Orlando, F1. May 1988.

Parallelism Applied to Fuzzy Rule-Based Reasoning, North American Fuzzy Informa-

tion Processing Society Conference, San Francisco, June, 1988.

(With O. Kim)

Datapac: A Parallel Reasoning Forward Chained System, Proceedings of the 2 nd annual

Florida A.I. Research Symposium, Orlando. April 1989.

(With T. Higgins and C. Eggert)

Backpac: A Parallel Goal-Driven Reasoning System, IJCAI-89 Workshop on Parallel

Algorithms for Machine Intelligence, Detroit, Aug. 1989.

Parallel Rule-Based Algorithms for Reasoning Systems, Advances in Artificial Intel-

ligence (Mark Fishman, Ed.), Jai Press, pp. 179-186, 1989, Greenwich, Conneticut.

(With O. Kim)

Results from a Parallel Reasoning Forward Chained System, Advances in Artificial In-

telligence, Vol. 2, Mark Fishman (ed.), Jai Press, To appear.

Parallelism in Backward-chained Expert Systems: Experimental Results, Applica-

tions of Artificial Intelligence VIII, Orlando, F1. April 1990.

Higgins, Timothy A. (1989), Issues in Parallel Expert Systems, M.S. Theses, De-

partment of Computer Science and Engineering, University of South Florida, Tampa,

December.

Kim, O. (1989), A Distributed Parallel Hierarchical Forward Chaining Inference

System, Master's Thesis, Department of Computer Science and Engineering, University

of South Florida, Tampa, April.

Programs:

Datapac (Multilisp version), Backpac (C, Multillsp, Mul-T, and Common Lisp versions),

Parallel EMYCIN (Common Lisp and Multilisp versions).



3 Details of the results and issues in the USF ISL's

parallel expert systems research

3.1 Introduction

Intelligent systems make inferences about a situation based on their internal knowledge.

When they contain a lot of knowledge or are working on a big problem, many inferences

and/or much searching of knowledge must be done. This can cause a knowledge-based

system to be slow. Large knowledge bases currently might be classified as being on

the order of about 5000 pieces of knowledge. In the near future NASA, for example,

envisions knowledge bases of 20,000, and more, pieces of knowledge for tile space station!

At the 1988 AAAI spring symposium, tile usefulness of medical knowledge bases with

100,000 or more pieces of knowledge was discussed. It is known that the current limits

of computing on one processor are being approached and even if the limit wasn't being

approached, the desired size of a knowledge base is probably growing faster than raw

compute speed. Parallel inference may provide a significant speed increase and allow

larger problems to be attacked effectively. This work has been targeted to determine the

opportunities and limits for the incorporation of parallelism into rule-based intelligent

systems.

NASA is in the process of developing a multiprocessor system to use in the Space

Station for intelligent systems tasks. The spaceborne very large scale integrated circuit

multiprocessor system (SVMS) will likely be made up of Lisp chips. It will be designed

to support Artificial Intelligence tasks. Algorithms for AI and expert systems must be

developed to support this and other parallel architectures. More specifically, expert

systems for real time applications may be developed on such a machine and systems

that would, currently, be too large to run in reasonable time on a uniprocessor may be

investigated.

Initially, we will give a summary of our current progress. Then we will discuss our





plan for the continuation of the research.

3.2 Background

On the gross level of detail, independent inferences may be performed in parallel and

much of an individual inference may also be performed in parallel (i.e. pattern matching).

If the communication overhead of the parallel breakup of the reasoning system is not

overwhelming some excellent increases in system speed may be hypothesized. Fine-

grained parallelism may also enable speed-ups, if the overhead is kept to a minimum[14].

There are various ways to represent knowledge and perform inference [46]. Ilere, our

work is concerned with a rule-based knowledge representation scheme, which allows fuzzy

certainties or beliefs in both the rules and the working set of information that the system

contains [17]. The use of fuzzy logic allows the modeling of many intelligent/expert tasks

in domains which contain imprecision or uncertainty. The only real effect this has is to

require continued work, if we are evaluating clauses in parallel. Even if a value for an

or'ed clause is found (unless tile value is one) processing must continue until they are all

known, since a greater value may be found. A rule-based system may operate in either

forward chained (data-driven) ol- backward chained (goal-driven) mode. Iiere, we discuss

them in the both modes. We discuss the current results of a backward chained expert

system, Backpac. Also, experience with Datapac and parallel EMYCIN is expounded

upon. Each of the paradigms discussed here has been tried on at least one parallel

processor machine.

There is much work going on in parallel Prolog [47]. Certainly, it can provide for

effective parallel rule-based systems. Our approach is concerned with paradigms other

than those available under Prolog. The Lisp paradigm is reported on here, but we

are also looking at systems in C because of the efficiency and low-level features that it

offers. In fact, the paradigm which makes use of the future construct as its primary

parallel operator is the actual one used. It will be explained in the later discussion on



the languagesused.

Our systemshavebeenimplementedin Multilisp [26],which is a parallel versionof

the Lisp programming language.Multilisp has the flavor of the Schemedialect of Lisp.

Multilisp takesLisp expressionsand compilesthem into an intermediate representation

called Mcodes. At run time it interprets theseMcodes. It also has a run-time library

of support routines which are written in Multilisp. IIence, the system is rather slow,

especiallywhen compared to a good compiled Lisp. It is very portable code, though.

Code compiled on a SUN will (and has) run without changeon a multiprocessor (the

Concert), sincetile Mcodesacrossthe two systemsare the same. The implementation

of the Mcode instructions is, of course,different betweenthe two machines. In fact the

Mcodeversionsof a program will run on anymachinewhich has the sameversionof the

Multilisp system.

Multilisp [27] hasone primary parallel operator, which we will briefly describe. A

function may be future'd which meansto declareit to run in parallel. An exampleuse

of the construct is

(setq e×(future (+ 2 3))).

The future construct immediately returns a future value for ex and spawns a task to

evaluate (+ 2 3). Now ex may be put in lists or manipulated in any manner which does

not require an actual value. When an actual value is needed the task requiring it is

suspended until the value is determined, unless the future has previously resolved to the

necessary value, in which case operation continues normally. This powerful construct

is the basis used to provide parallelism in the system discussed here. Semaphores are

available to protect shared variables.

MUL-T [32] is a compiled Lisp which runs on the Encore Multimax. It has an

environment which makes it look very much like Multilisp. In this environment, most

Multilisp constructs are available. Most importantly for this work, the future construct

for parallelism is available, as are semaphores. Since code in MUL-T can be compiled,
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it providessignificantly faster executiontimes than doesMultilisp.

Backpac and Datapac have beentested on the Concert multiprocessor system and

the Encore Multimax [29, 23]. The Concert is a multiple instruction, multiple data

machine (MIMD), which may be configuredfor up to 64 processorsin the versionof it

we have used. The most processorsactually used in this study are 31. The Concert

consistsof eight clusters eachcluster having eight MC68000 processors,which have a

half a megabyteof memory on board. The clustersare connectedby a crossbarswitch.

There are eight megabytesof 16way interleavedmemory sharedmemory. All memory

may be accessedby all the processors. However,we do not explicitly have non-local

processorsaccessanother's local memory.

The Multimax had 10processorsin the configuration at USF. Five processorboards

are in it, eachwith 2 processors.Tile machinemayhaveup to 20 processors (10 boards).

It is a shared memory machine with 32 megabytes of shared memory in this configuration.

In addition each processor has a 64K cache local to it, which only it may access. The

processors share a common bus which has 100 megabit peak throughput. Both Multilisp

and MUL-T are available on the Multimax.

The basis for all speed-up comparisons on the Concert and Multimax is the following.

The best sequential version of the developed system is run on one processor and its

performance is compared with the best parallel version running on some specified number

of processors. We do not time the initial loading and set up of the knowledge base in

either the sequential or parallel version. Only the process of inferencing is timed.

3.3 Backpac

Backpac is a rule-based expert system which can diagnose diseases which cause fevers

to be evident, or identify rocks or diagnose problems with four-stroke piston-driven car

engines. These problems are attacked with separate knowledge bases. They make up our

suite of real-world knowledge bases. While the domains are quite different, they can be
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looselydescribedasdiagnostic in nature. The systemchainsbackward from goalsin its

reasoningprocess.Backpacallowsthe user to enter fuzzy certainties to its queries. The

systemparadigmis that of a classificationor diagnosticexpert system. It is implemented

in Multilisp and hasbeenre-implementedin MUL-T. Backpacis implementedin sucha

manner that it can run in CommonLisp [59]with parallelism fimctions removed. It in

fact has run on a Symbolics Lisp machine in common Lisp. This is important with tile

advent of parallel common Lisps from Lucid, Franz, and Top Level among others.

This effort at parallelizing rule-based expert systems differs from others [45, 38] in

the following manner. Rather than parallelizing a match algorithm such as Rete [8]

in an existing (in this case forward-chained system) or parallelizing an existing system,

Backpac has been built from the start with parallel inferencing as a goal of its operation.

One important issue this work has been aimed at, is to discover how much speed-up might

be available in a rule-based hackward-chained parallel reasoning system and what the

limiting constraints are.

The system itself is simpler and more limited than one which uses Rete (or some

other match algorithm in a match, recognize and act cycle type of production system).

There are two versions of Backpac, one which makes some use of variables and the

current model that we report on which does not. In this system a rule's premise is

examined only once and pattern matched at that time. It is intended that under the

variable version of the system several instantiations of the rule may be fired, but only

at the time it is examined. Hence, minimal state information is saved. Backpac is not

as general a tool as an OPS5-based system, but it is still capable of being used to solve

interesting problems at the cost of more burden on the knowledge engineer.

Rules in the system are defined by Lisp fimctions. They may contain any level of the

nested conjunctives and and or. Negation is also available. Special purpose functions

can be added and some comparators exist. The rules come in two types, goal and others.

Each clause in the rule is defined in a function in which it is associated with a string to
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be used to ask the systemuserquestions. A clausecan be a function suchas (greaterp

age 15), wherethe value of agebeing larger than 15 is determined to be true or false.

This is the only place that any variable facility is currently allowed in the version of

Backpac (V.3).

Originally, Backpacwas implementedin a simulator which ran on a VAX [19]. Un-

fortunately, it did not take into account memory contention or bus contention. Small

granularity tasks tendedto provide speedincreasesin the system. Also, until we made

someoptimizations the granularity of sometasks was larger than it should have been.

The fallout of this is that weoriginally did muchmore in parallel than is done currently.

There is only one level of parallelism in Backpac. Every goal rule, a rule which has

no successor and therefore provides a conclusion for the system, can be rnn in parallel.

Alternatively, they may be broken into groups of goal rules and these may be run as

one process. This high-level is the only one in which parallelism is used. If we attempt

to determine the values of clauses in parallel for example, the system will slow down

because the task granularity is not large enough in general.

Our algorithm for breaking goal rules up into groups is naive at this time. We simply

partition them into the first available group of the desired size as they are encountered.

This can lead to uneven task size.

There is a question ordering issue when the user is queried interactively. The sys-

tem user will be processing questions sequentially, but they can arrive in an unordered

manner. The questioning process must be able to order them so that the user perceives

lines of questioning. In the parallel tests reported here values for the clauses are pre-set

in working memory.

Backpac uses fuzzy modus ponens, as defined in Ill, to reason with uncertain in-

formation. Conjunction is represented by max and disjunction is represented by rain.

Multiple pieces of evidence are combined as in the Fess expert system [17]. The evidence

accrues into a stronger belief. In this area the only effect of fuzziness on parallelizing the
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system is that a non-zeropredicate in an or does not necessarily mean do not evaluate

the other ones. tIowever, this only occurs if we examine clauses in parallel, which we

are not currently doing.

3.4 Parallel reasoning

/

The following is a description of how Backpac's flow of control proceeds. Initially, all the

bottom level goals are partitioned into groups. The user may set the size of the groups.

The group size may be as small as one, which means each individual goal rule is fired

by a separate process. These processes will also be responsible for doing any chaining

which may be necessary.

At the largest level all the goal rules may be in one group. This will provide sequential

execution of the rules with some added overhead, as one task to do them (separate from

the control thread) is spawned. Alternatively, any number of intermediate group sizes

may be created, each of which will correspond to a process.

Working memory is a shared data structure among processes. Values of clauses are

represented on property lists. There is no difficulty with multiple readers and there is

only one case in which multiple writers might collide. It is described in tile following.

It may be the case that several rules from different process groups will require the

same rule to be fired in order to determine a clause value. A semaphore is associated

with clauses. When a rule is fired to determine a clause value the semaphore is set.

This prevents other rules from firing. Those suspended can get the value from working

memory after the rule has been fired and the semaphore released.

After all goal rules have provided a belief value for their consequents, the system will

present all goals which have a belief value associated with them which is greater than a

pre-set threshold. These values are returned by the goal rule and kept in a list.
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3.5 Experimental results

We will now present the results from our tests of the Backpac system with high-level

parallelism implemented. The results fi'om Concert and the Multima× will be discussed

separately. First the results from Concert will be discussed. The results are summarized

in Table 1.

The best results from the four knowledge bases run on the Concert are reported

here. In Backpac, a 17-fold increase in speed was observed with the use of 20 processors.

This occurred on a knowledge base of 800 rules with them all on the goal level. This

knowledge base could be viewed as a set of control rules, where periodic actions are

taken based on some time clock. Using the knowledge base on fevers with thc use of 12

processors by assigning goal rule clusters to each processor, the speed-up was just over

10 times. In a 400 rule knowledge base with 50 goal rules and 8 levels a speed increase

of just over 9 was observed with the use of 10 processors.

From the table, it is clear without clustering goal rules onto processors, there is very

little speed improvement. There are a set of lights on the Concert which indicate switch

contention. In the case of no rule clustering they show a lot of contention. It is clear

that as we use use more clusters of rules, performance will increase to a point and then

adding clusters will provide a degradation of performance. This is due to the fact that

adding another cluster of rules also adds a process to the system. The process then will

make memory and switch requests, which cause contention. The contention becomes a

more important issue than the task granularity. Also, as more clusters of goal rules are

assigned to a processor the size of the cluster will go down, since the number of goal

rules remains constant. Hence, task granularity is reduced in addition to the increase in

contention.

On the Encore Multimax our speed-ups are less impressive. However, we do have less

processors which is one factor. None o[ our efflcicncies on the Concert is above 90% 1.

1Efficiency is defined as the amount of speed increase over the number of processors used.
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Knowledge Base Speed up Number of goal processes

fevers 10.4 12

fevers 8.8 10

fevers 6.4 7

fevers 9.7 20

fevers 3.5 24

fevers 1.9 31

fevers 1.4 60

gems 5.16 10

gems 4.2 7

gems 2.9 11

400 rules, 8 levels 9.1 10

400 rules, 8 levels 8.1 12

400 rules, 8 levels 6.0 15

400 rules, 8 levels 2.3 30

400 rules, 8 levels 1.9 2

800 rules, 1 level 17.0 20

800 rules, 1 level 16.2 30

Table 1: Results from tile Concert multiprocessor with 31 available processors.
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Hence,8+ times speedincreaseis about the maximum that we would expect from tile

Multimax.

The bestresults will behighlighted hereand then wewill discussthe overall flavorof

theseresults. With the feversknowledgebase,a speed-upof 5.5times with 8 processors

wasobserved.This was the best result with a real-world knowledgebase.

Somebetter resultswereobservedwith the useof generatedknowledgebases.All of

the generatedknowledgebaseshaveregularity in their structure. An 800rule knowledge

basemadeup of 8 levels of chaining and 100 rules per level was observed to have a little

bit over a 7 times speed-up. This is with the use of 10 processors. Another knowledge

base that had a good speed-up was the 400 rule knowledge base, which consisted of 8

levels with 50 rules per level. It provided a speed-up of slightly less than 6 1/2 times,

when run on 10 processors. The rest of the results are summarized in Table 2.

It can be seen that chunking rules into groups on the goal level was done. The idea of

increasing granularity and decreasing contention for memory and the shared bus seems

reasonable. However, it did not provide the benefits hoped for. Apparently, having more

available small tasks works better in some cases. This is despite tile clearly increased

overhead of having more tasks with a lower granularity size competing for resources.

3.6 Backpac in Mul-T

The Mul-T version of Backpac makes use of arrays for the types of knowledge repre-

sentation that originally used property lists. This and the compiled nature of it makes

the system very fast. Larger knowledge bases can and have been used under Mul-T.

The performance of the fevers knowledge base is less since the granularity of the tasks

has gotten quite small. To add processors causes a distinct degradation of performance.

The multi-level knowledge bases prove to have little contention and get quite good per-

formance. Table 3 contains the results of tests in MUL-T. All tests have just goal level

parallelism implemented.
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Knowledge Base

fevers

fevers

gems

gems

Max. speed up

3.8

5.13

3.095

3.7

Number of processors Rule clusters

N/A

8

N/A

7

200 rules, 8 levels 5.24 9 N/A

200 rules, 8 levels 3.29 8 8

800 rules, 8 levels 5.14 10 10

800 rules, 8 levels 7.27 10 N/A

200 rules, 4 levels 5.53 9 N/A

200 rules, 4 levels 5.11 10 10

200 rules, 4 levels 3.59 8 7

400 rules, 8 levels 6.47 10 N/A

400 rules, 8 levels 5.09 10 10

Table 2: Results from the Encore Multimax.

Knowledge Base Max. speed up Number of processors Rule clusters

fevers 3.43 6 N/A

1200 rules 5.24 9 N/A

1280 rules (2 levels) 6.31 10 N/A

400 rules (8 levels) 7.25 9 N/A

2560 rules (2 levels) 7.25 9 N/A

Table 3: Results from tile Encore Multimax under MulT.
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It is our intent to add morecomplexvariablehandling and pattern matchingfeatures

to Backpac. This will up the task granularity and provide a morepowerful systemfor

experiments. Onething hasbecomeclear. The language,machineand operating system

currently havea strong effecton results and all resultsmust be looked at in the overall

context.

3.7 Backpac in C

The Backpac system has also been written in C [4]. The C language is available on most

parallel machines. Hence, this effort provides us a straightforward method to examine

the performance of the system on different architectural platforms. The C language

implementations are also, generally, faster in terms of compile and run time speed.

Briefly, we discuss some results from the Encore version. In this version the speed-ups

were less than in the Lisp version for comparable knowledge bases. As the knowledge

bases got larger, approximately the same speed-ups were observed as shown above. For

an example, a generated knowledge base of 12,800 rules all on one level gave a speed-up

of about 7 times with 9 processors. With the Fevers knowledge base using busy waits

for access to working memory, we got about 6 times speed increase. These results do

not include the initial overhead of copying shared information. One issue that shows up

in this arena is that of memory copying and process overhead. The overhead of initially

copying the shared information, such as working memory and sets of rules, is quite high.

It is easier to measure than in the Lisp systems, where the initial start-up of processes

and pointer structures is folded into the Lisp system initialization. IIowever, over many

runs of an expert system this overhead will become a negligible portion of each one.

3.8 Datapac

The Datapac system is a parallel hierarchical forward chaining inference system designed

to maximize the inferencing speed in a multiprocessor environment by employing the
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parallelisms in a full range, which includesparallelism betweendifferent rule inferences

aswell asparallelismwithin a rule inference.The hierarchicalforward chaining inference

system is the rule basedsystemwherethe rules are arrangedin hierarchy accordingto

the precedencerelationship sothat eachrule is examinedonly oncefor firing. Rule level

parallelism allowsevery rule to try to start its inferencingprocessas soonas it satisfies

the precedenceconditions. Thus, control of the inferenceflows fi'om the top of the rule

system to the bottom. This processingsystem,which could be modeled(and hasbeen

run) on a multiple instruction multiple data (MIMD) machines,has beensimulated by

Multilisp in this research. Performanceevaluationsdemonstrate that this hierarchical

forward chaining system (Datapac) providesa significant speedincreasein a simulated

environment and real gains in multiprocessorenvironment.

The basic idea is simple and very much aimed at expert problem solving. In order

to come to someconclusion,a path of reasoningwill be followed. That is, somechain

of inferenceswill occur. Datapac breaks the various rules in a knowledgebase,which

may participate in a reasoningchain, into levelsof rules. On eachlevel the rules are

independentof one another. On higher levelsthe rules dependupon the inferencemade

by lower level rules. The bottom levelleadsnowhereand the top-levelhasnoconclusions

of other rules in its rules' antecedent.

This schemeis clearly limited. It turns a knowledgebaseinto a sort of decisiontree.

However,it doeshaveapplicability for at least sometypesof expert knowledgebases.

Initially, anunlimited numberof processorsis assumedto beavailablefor our system.

All the rules in the systemare givenone processorrespectivelyand start inferencingat

once. What controls the reasonabletransition of inferencing is the preceder-successor

relationshipsbetweenprocessors.A rule processorwon't try matching its premiseto the

working memory for rule firing until its everyprecedingrule's firing is completed.

The working memory(WMP) containsall the facts which areeither initially givenor

derivedfrom previousinferencing. Eachcurrently active rule hasits antecedentmatched
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againstworking memory, if it is to be ever fired.

After a rule is fired it sendsthe result to its succeedingrule processorsimmediately,

enabling them to start inferencing.

Through the testings, this hierarchical forward chaining system (Datapac) showsa

considerableimprovementin speedup.For example,in a rule basewhere 15non-variable

rules on averageresidein eachlevel, the speedupratio of parallel run to sequential run

wasover9. For a variable rule systemof 100 rules,where20 variable or constant rules

on averageresidein eachlevel, the speed-upratio wasover 10.

3.9 Results from simulation

This processing system run has been simulated by CSIM Multilisp [38] for performance

testing. In our simulations, it is assumed that an unlimited number of processors are

available. The results are reported in terms of speed-up and the maximum number of

tasks, which ran in the parallel trials. The speed-up is measured by the best sequential

version versus the best parallel version. Tile times are divided thereby providing the

reported number.

Some artificial and real domains have been applied to the system. The results show

that this hierarchical forward chaining system (Datapac) can provide a considerable

improvement in terms of speedup. For example, for a 90 rule set without variables

(constant) where 16 rules on average are in each level, the speedup ratio of parallel run

to sequential run was over 9 with a maximum of 22 processors used. For a 100 variable

rule system inferencing where 20 variable or constant rules on average reside in each

level, the speed-up ratio of parallel run to sequential run was over 10 with a maximum

of 180 processors used. A rule base consisting of 25 variable rules gave a speed-up of

about 5 times with a maximum of 30 processors.

A knowledge base which consists of 64 rules and can diagnose fevers was a real

example which has been used in our system. It showed a simulated spced-up of about
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11 times with a maximum of 43 processors.

3.10 Results From The Encore Multimax

The system has also been run on a 10 processor Encore Multimax in a version of Mul-

tilisp which runs on the Multimax. With a knowledge base about fevers which consists

of 64 rules, the system speeded up by a factor of about 6.3 times with 9 processors. This

particular knowledge base has been implemented without variables. This is consistent

with our quest to determine the limits of parallelism in reasoning systems. However, a

generally useful system will need the use of variables. Note, one processor is left to do

system's sorts of tasks, such as run tile login shell and handle ethernet traffic.

On eight processors a knowledge base of one hundred rules provides us with a speed-

up of almost linear proportions (a factor of 7.3). This rule base contains variables and

tile variable pattern matching, which has been parallelized, makes the task granularity

larger than it would otherwise be. With a twenty-five variable rule knowledge base with

nine processors a speed-up of about five and a half times was observed. These knowledge

bases have to do with relationships in a family. They are really based on tests of logical

structure and have no real depth of knowledge in them. The 100 rule knowledge base

contains 25 rules per level. The 25 rule knowledge base has five rules per level. Basically,

a Model can not be a substitute for a reality. Though the results from the real machine

are the easiest justification of (usefulness of) a proposed scheme, the results from tile

model simulation could be a better suggestion for an idealistic machine structure itself.

3.11 Summary of Datapac issues

Fundamentally, a forward chaining system is a kind of exhaustive search system and it

is commonly known that parallel architectures are very effective for that kind of search

system. Significant speed-up improvement in our system demonstrates that the system is
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agood parallel schemefor forward chainingrule basedinferencesystems. In this parallel

inferencing scheme,the central control part becomesrelatively small by distributing

most of its decision to each individual rule processor. That is another indication that

the systemis really closeto the oneof the idealistic parallel processingconceptsin that

controls are distributed over individual processors. We seethat as a knowledgebase

growslarger, filrther parallelism and speed-uparepossible,almost linearly proportional

to the number of independentsetsof ruleswhich meansthat there's no clear bottleneck

with any big knowledgebase(at least in the rangeof CSIM simulations and the inputs

we used). The superiority of parallelism to the sequentialexecution tells about the

suitability of the algorithm in parallel processing.But the superority of our hierarchical

inferencing algorithm to the random inferencing can not be overlooked. Building a

robust construct for morespeedyand efficient parallel logical and/or subprocesseswill

be one of the main breakthroughsfor an upgradedparallel inferencing schemewhich,

with current Multilisp features,is not easilyachieved[31]. We observethat the sizeand

the structure of the knowledgebaseaffectsthe performanceof the system.

There is also the questionof ]low often sucha model as this may be useful. This is

one of the areasfor ongoinginvestigation.

4 Experiments with parallel Emycin

EMY is the name given to a parallel version of EMYCIN by two researchers at the

Microelectronics Computer Technology Consortium [38]. It runs under Multilisp, which

is a parallel version of Lisp.

There are results from simulations, which are reported in [38] and [16]. In the first

case contention for memory and possibly a bus are not taken into account. In the second

simulation of EMY under Common Lisp, an attempt is made to incorporate reasonable

hardware contention in the results. In this work, we compare the simulation results to

the actual results from running the EMY system on an Encore Multimax, which is a

23



bus-basedarchitecture and the 64processorswitch-basedarchitecture Concert machine.

Further, we havemade changesto the systemto (hopefully) improve its performance.

These results will also be presentedwith an analysisof the possibilities for providing

any future speed-ups.

The parallelism used by Krall and McGehearty wason three levels. Each rule was

applied in parallel. The hypotheseswere traced in parallel. Eachpredicateof a premise

wasdeterminedin parallel with the useof parallel and and oroperators. An examination

of the operation of EMYCIN shows that these are logical places for the insertion of

parallel operators.

In actual operation on the machines we used, which are early versions of parallel

architectures and thus have reasonably high overheads, there is some question on whether

the granularity of determining predicates is large enough to justify the parallelism used.

In fact in the Backpac system [20], we have found, that it is not in general. This same

fact was true of EMY as is shown in the following.

Also, in other parallel systems with which we have worked, Backpac and Datapac,

[19, 23] contention for memory and the bus have been observed to be problems in some

cases. The hypothesis that EMY might also suffer from these problems was tested in

EMY with inconclusive results.

On the Concert, all results reported here are with 23 processors available. Most of

the time we were working with four megabytes of memory, although a couple of runs were

done with 8 megs. There can be a difference of times based on less garbage collections.

However, we were careful about filling up our garbage space and restarted the system

when it began to be a problem (after multiple runs).

On the Multimax, results will be provided with the number of processors that they

were obtained on. In general, it has been found that under Multilisp on the Multimax,

performance is better with less than 10 processors. This apparently has to do with

system tasks mixing in with user tasks and some scheduling overhead.
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In initial results with EMY, and a knowledgebaseon fevers, it waspredicted that

about a 12 times speed-upwould be the upper limit with 24 processors(comparableto

our 23) [38]. With 8 processorsthe upper limit was5.6 times [38]. In the later study

EMY with the sameknowledgebasewasshownto peak at a 9 times speed-upwith 64

processors.In fact it cameverycloseto this peakby 16processors,although exact figures

were not given [16]. The model wasof a sharedmemory machinewith a hierarchical

interconnectand clusteredprocessors(8 processorsper cluster). It is somewhatllke the

Concert architecture, but rather different than the Multimax architecture.

Below, we just discusson a high level the results from running parallel EMYCIN on

the Concert.' We have made someadjustments to the original EMY, but retained the

semantics.A complete description of this work is in [25].

4.1 Results from parallel EMYCIN on the Concert

The results were lower than one would expect from 23 processors. With the fevers

knowledge base a speed-up of five times was observed. In this case no and/or parallelism

was used. Both the rules and hypothesis lists were broken into chunks. There were 20

rule chunks and 9 hypothesis chunks in the best case, given above. Not all possible

combinations were tried, but enough to narrow down the best to within one or two

chunks and the time to no more than about two tenths of a second difference. Note,

that the speed-up reported belongs to the fastest parallel and sequential times over

several runs.

Without using any chunking, the fevers KB provided a five times speed-up, also.

Chunking was of essentially no help. If it was not done to maximize the speed with the

best chunks, worse performance occurred! This was a surprise, so an investigation was

made as to why it happened. It turns out that while the time to determine a hypothesis

may vary by a factor of 2 it is small compared to the average rule evaluation time. This

is not surprising since a hypothesis is evaluated by evaluating the appropriate premise
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of a rule which hasalreadybeenfired. That is all the clausesor predicateshavea stored

value. Rule firing times on the other hand can vary widely. By an order of magnitude

in fact. If the rules are not chunkedor clusteredvery cleverly, it is likely that several

long rules will end up in the samechunk. This processwill then take a long time to

finish, becauseit hasmuchwork to do. Now the work which may be done in parallel is

reduced,sowhile contentionmay be less,it is offsetby the lack of parallel work (or the

increasein the sequentialityof the system).

The parallel and/or code was also tried on the Concert. However, with the chunked

system it significantly increased the time to determine a conclusion (by up to a factor of

2). It spawns a lot of small tasks, whose overhead costs outweigh the benefits of more

parallel work.

Knowing that semaphores are expensive, we tried one scheme to minimize tile nec-

essary locking on a semaphore. If a value has already been determined, it will be in the

appropriate clause. Currently, whoever wants to look at it must check a semaphore. Tile

code was changed so that a flag could be examined instead (after the value is initially

determined). Unfortunately, the constant evaluation of the extra code cost more than

was saved by the skip of the semaphore. It turned out that the time was only about

four to eight percent greater. IIence, it was almost a wash.

The gems knowledge base was also examined under the EMY paradigm on tile

Concert. Its characteristics are distinctly different than the fevers KB. It has more rules

and more levels of chaining (tap to 4). With gems, just as in [38], the speed-up was less

than with the fevers knowledge base. It was about 2.8 times. This was with chunking

of 8 rule chunks and 8 hypothesis chunks. With no chunking, the speed-up was slightly

slower. The use of the parallel and/or mechanism slowed the system down slightly, also.

The method of skipping a semaphore did nothing for gems, either.

The results discussed are less than tile simulation would lead one to expect. However,

it is possible that they may be improved.
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5 Directions from parallel tests

We, initially, used a simulator [19] to develop the systems which are reported upon. This

simulator did not effectively take into account memory contention and bus contention

delays. This lead us to great results, which we realized were inflated, and some higher

expectations. After actual experimentation, we would not place too much faith in a

simulation, except for a rather general idea of possible performance. The exception

would be a simulator strongly tied to a specific machine architecture and using the

measured or expected delay times, and contention (bus and memory) times, etc.

Another thing we learned is that creating a parallel task wherever there is a reason-

able opportunity to perform some computation in parallel is not necessarily the correct

action. Consideration of the amount of processors available must be done in addition

to the usual granularity considerations. Many more tasks than processors caused a

scheduling slowdown that was noticeable under our paradigm for some knowledge bases.

Further, even if there are processors available, more tasks will create more bus and

memory access requests. If they do create significant bus and memory access requests,

contention will slow the system down. This is, of course, architecture dependent. The

results of bus (switch) contention were quite evident on the Concert. On the Multimax,

we suspected bus contention, but could not show it. We came to conclude that it was re-

ally memory contention, caused by the fact that we could not generate copies of objects

in a reasonable fashion. Certainly, separate cons cells (pointers) were no problem, but

in the end they would point to the same location where contention could occur. This

was again a function of our Lisp's paradigm.

Good tools to determine what is happening in a parallel computing system are a

necessity. These tools did not exist for us to measure performance under Lisp on either

the Concert 2 or the Multimax.

2Actually, there were some parameter recording utilities in Multilisp. There was not documentation
however and the decoding programs were targeted for a Symbo|ics machine to which we had no access.
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6 Summary of current status

In our simplified model of a backward chained expert system, there have been some

reasonable speed increases with the use of parallel processing. The limiting factors are

not fully clear at this time. Certainly contention for working memory is one problem.

Task granularity is another issue, but it is not unique to expert systems.

The Concert implementation of Backpac responds much better to clustering of goal

rules into tasks than the Multimax implementation. On the Multimax clustering goal

rules was helpful with the complicated predicates in the fevers and gems knowledge

bases, but not elsewhere. Both machines use shared memory, but the architecture of tlle

processors makes their characteristics markedly different. The current bottlenecks are

contention based and better tools may help mitigate this.

The particular dialects of Lisp that we have been using have quirks of their own

which have prevented some trials from heing made. The lack of a way to get true

copies of values and arrays has kept us from trying some methods to minimize memory

contention. It has Mso prevented the effective partioning of working memory to reduce

contention. This would show whether it is different from bus contention in preventing

exploitation of parallelism. On the Multimax tile lack of a way to keep other processes

(such as the ethernet controller) from mixing in with ours has had an effect in obscuring

some possible exploitation of parallelism.

Datapac shows promise in increasing inferencing speed with the use of parallel pro-

ccssors. The main issue here is how many problems can it effectively be used to solve. It

is certainly much less functional than OPS5 with Rete or some other pattern matching

algorithm. However, it has less bottlenecks for parallel processing and may be used to

solve a reasonable set of expert emulation (system) problems.

Our initial test with the EMYCIN system show that the speed increase from paral-

lelism is less than simulations tend to show. It also shows that little is gained from using
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and/or parallelism in general. It seemsthat one might be able to use it in pre-identified

places, however. Naive, clustering of rules is not helpful for the rules in the example

knowledge bases that we have been using. This is due to the fact that the time to fire

a rule can differ by an order of magnitude.

There is a benefit to parallelizing expert systems on current architectures. For back-

ward chained systems, there are limits to the speed increase that will be available. These

limits need to be better quantified. As the architectures become better able to handle

finer grained tasks and the languages evolve, parallelism should be more of a factor in

improving the performance of expert/intelligent systems.

6.1 Technological issues

There are several technologic issues which affect this work. Using C in the Backpac effort

comes under this category. For it allows us access to low-level parallel features such as

spin locks, which haven't been available under Multilisp. Spin locks in particular are a

very usefill concept for protecting working memory. A process that is writing to it will

not take a large amount of time. However, the use of semaphores is time-consuming,

because a process gets suspended (involving state saving) and put on a task queue

waiting for an event. In this case a busy wait (which will normally be quite short) is

more effective, embodying less overhead.

In addition there can be different classes of parallel tasks from full processes with all

the information they embody to lightweight tasks sometimes called threads [42], which

don't have a control or binding stack of their own. These entities can allow for finer

grained parallelism than a full-fledged future process. The use of such entities will better

allow for at least some predicate/clause processing to be done in parallel. These features

are often available in C and are available in some of the new parallel common Lisp's

such as Top Level's, PICCL 3. We will use the Common Lisp features, when a machine

3pICCL is a trademark of the Top Level Co.
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with the languageon it comes available.

Knowledge-based systems may become large for a number of reasons. Among them

are that the domain embodies a lot of information (often called commonsense notions),

the domain is relatively broad or multiple areas of expertise are needed to solve the

problem. These are not comprehensive or mutually exclusive, but they serve to introduce

the final topic to be examined near the end of this proposal's work. Blackboards [5] have

proven to be effective in allowing for multiple cooperating experts. In the blackboard

concept several independent knowledge sources, which are expert systems in their own

right cooperate to solve a problem. Intermediate solutions, solutions to portions of a

problem and modifications of proposed solutions are posted to a global data structure

called a blackboard. This has lead such systems to be called blackboard systems.

There are issues such as control and how the blackboard is used that make for signif-

icant differences between blackboard systems [44]. Clearly, the independent knowledge

sources may operate asynchronously, or in parallel, under some control schemes. Indeed,

one of the early expert system called HEARSAY [39], a speech understanding system,

used the knowledge source, blackboard paradigm. It has further been investigated [44] in

parallel simulations to look at the possible benefits in speed from parallelization. Not all

the results at this time are very promising, but we believe it to be a domain dependent

situation.

In the context of our work, the use of blackboards would fall under the broader

]leading of partitioning knowledge bases. It could provide a very clean partitioning with

each knowledge source having its own working memory, thus reducing contention for

that. Additionally, given a good partition of the problem the granularity of the knowledge

sources could be kept high. This would be an artificial use of blackboard architectures

getting away from the original idea of purely cooperating experts. However, it holds out

the possibility of some clear advantages. Additionally, parallelism could be used within

the knowledge base in the vein of Backpac and Datapac, providing that the knowledge
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sourceshad a large enoughnumberof rules to warrant such activity. The investigation

of the utility of blackboards for parallel expert systems would provide both a contrast

and possible enhancement to the effort of parallelizing individual knowledge bases.

6.2 Summary

This work has involved the development and measurement of both goal-driven and data-

driven expert system paradigms for parallel machines. Currently, we have a 64 processor

Concert machine, 32 processor Butterfly machine, a 12 processor Ardent Titan (which is

a collection of four networked machines in our College of Engineering) and an 8 processor

Encore Multimax as available research platforms. A 16 processor IIypercube will become

available in February or soon thereafter of 1990. Each of these machines runs Common

Lisp, C, Multilisp or some combination of them. Promise has been shown in the use of

parallelism in expert systems work. Many questions have been raised and a few of them

answered.
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